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Abstract In this paper the effect of a small dissipation on waves is considered to find the exact solution to

the dissipative Compound Kortewegde Vries Burgers equation (DCKdVB) in the presence of viscosity and in

the absence of viscosity. With the help of the canonical form of Abel equation it is proved that the DCKdVB

equation is integrable in terms of Weierstrass’ elliptic functions.
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1 Introduction

In this paper we consider the well-known compound Korteweg-de Vries-Burger (CKdVB) equation.

ut + puux + qu2ux + ruxx − suxxx = 0, (1.1)

where p, q, r, s are all real constants. This equation is actually a combination of the KdV, mKdV and Burger

equations, involving nonlinear dispersion and dissipation effects. For the different choices for p, q, r, s we can

find different well-established differential equations.

For p 6= 0, q 6= 0, r = 0, s 6= 0; the (1.1) reduces the compound KdV equation as

ut + puux + qu2ux − suxxx = 0, (1.2)

For p = 0, q 6= 0, r 6= 0, s 6= 0; the (1.1) reduces the mKdV-Burgers equation as

ut + qu2ux + ruxx − suxxx = 0, (1.3)

For p 6= 0, q = 0, r 6= 0, s 6= 0; the (1.1) reduces the KdV-Burgers equation as

ut + puux + ruxx − suxxx = 0, (1.4)
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For r = 0 in (1.3), (1.4), we get the mKdV equation as

ut + qu2ux − suxxx = 0, (1.5)

and KdV equation as

ut + puux − suxxx = 0, (1.6)

N. A. Kudryashov [16] worked on KdV (1.6) KdV-Burgers equations (1.4) and established some new travelling

wave solutions of these equations. Zhaosheng Feng [5] obtained a new class of solutions of the Kortewegde

VriesBurgers equation(1.4). Zheng et. al [17] have also obtained some new Exact Traveling Wave Solutions

for Compound KdV-Burgers Equations (1.1) in Mathematical Physics. Stefan C. Mancas, Greg Spradlin, and

Harihar Khanal [12] have solved for Weierstrass traveling wave solutions for dissipative Benjamin, Bona, and

Mahony(BBM) equation

ut + ux + uux − uxxt = νuxx

where ν is a transformed kinematic viscosity coefficient. A generalization to the equation(1.1) by adding a

dispersion term is provided by the equation

ut + puux + qu2ux + ruxx − suxxx = γux, (1.7)

where γ is a real constant parameter, describes the unidirectional propagation of shallow water waves over a flat

bottom (see[11]). The equation (1.7) is named as dissipative Compound Kortewegde Vries Burgers equation

(DCKdVB).

2 General solutions of the DCKdVB equation in the travelling wave

We first present the general solution of the DCKdVB equation by using the travelling wave in Eq. (1.7).

u(x; t) = u(ζ); ζ = x− ct is the travelling wave variables and c 6= 0 is the translational variable.

Then by considering ′ = d
dζ (1.7) becomes

−cu′ + puu′ + qu2u′ + ru′′ − su′′′ = γu′

Integrating and simplifying,

u′′ − r

s
u′ +

1

s

[
(γ + c)u− p

2
u2 − q

3
u3 +A

]
= 0, (2.1)

where A is an integrating constant. To solve (2.1) we first state and prove the following lemma and using this

lemma we will establish the solutions for the equation (2.1) in the form of travelling wave.

Lemma 1 Solutions to a general second order ODE of the type

uζζ + qo(u) + q2(u) = 0 (2.2)

can be establish via the solutions to first kind of Abel’s equation

dy

du
= q0(u)y2 + q2(u)y3, (2.3)

and vice versa by using the relationship uζ = η(u(ζ)).
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Proof Since uζ = η(u(ζ)), we have uζζ = dη
duuζ = η dηdu .

Then (2.2) reduces to the second kind of Abel’s equation

η
dη

du
+ q0(u)η + q2(u) = 0, (2.4)

Let us take a transformation of the dependent variable as η(u) = 1
y(u) . So the equation (2.4) becomes

dy

du
= q0(u)y2 + q2(u)y3,

which is (2.3). By comparing (2.1) and (2.2),

q0(u) = −r
s
, q2(u) =

1

s
[(γ + c)u− p

2
u2 − q

3
u3 +A], (2.5)

Again let us consider the linear transformation, v =
∫
q0(u)du = − rsu. Then (2.3) transformed into

dy

dv
= y2 + g(v)y3, (2.5a)

where g(v) = − (γ+c)s
r2 + p

2r3 s
2v2− q

3r4 s
3v3− A

r is known as Appell’s invariant. Now the Lemke’s transformation,

y = −1

z

dz

dv
, (2.5b)

transformed the equation (2.5a) into a second-order differential equation

z2
d2v

dz2
+ g(v) = 0. (2.5c)

2.1 No viscosity, r = 0

In this case the equation (2.3) becomes dy
du = q2(u)y3, which reduces in the form by using (2.5)

y−3dy = 1
s [(c+ γ)u− p

2u
2 − q

3u
3 +A]du

Integrating and using the relations η(u) = 1
y(u) and uζ = η(u(ζ)), we have

u2ζ =
1

s
[−(c+ γ)u2 +

p

3
u3 +

q

6
u4 − 2Au]− 2D, (2.1.1)

where D is an integrating constant. This equation can be written as

(
du

dζ

)2

=
q

6s
u4 +

p

3s
u3 − (γ + c)

s
u2 − 2A

s
u− 2D ≡ R(u), say (2.1.2)

Let us consider the equation(
df

dz

)2

= a0f
4 + 4a1f

3 + 6a2f
2 + 4a3f + a4 ≡ R(f).

This equation can be solved in terms of Weierstrass elliptic function ℘ (see[15]) as

f(z) = f0 +
R′(f0)

4[℘(z; g2, g3)− 1
24R

′′(f0)]

where prime denotes the derivative w.r.t f and f0 is a simple root of R(f). The invariants g2, g3 of ℘(z; g2, g3)

are given by

g2 = a0a1 − 4a1a3 + 3a22
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g3 = a0a1a4 + 2a1a2a3 − a32 − a0a23 − a21a4 and the discriminant is 4 = g32 − 27g23 .

Thus the solution of (2.1.2) is,

u(ζ) = u0 +
R′(u0)

4[℘(ζ; g2, g3)− 1
24R

′′(u0)]

where u0 is a simple root of R(u). Invariants are

g2 = − qD3s + pA
6s2 + c2

12s2

g3 = qc
18s2 + pAc

72s3 + c3

216s3 −
qA2

24s3 −
p2D
72s2

discriminant, 4 = g32 − 27g23 .

When q = 0, (2.1.1) reduces to

u2ζ =
1

s
[−(c+ γ)u2 +

p

3
u3 − 2Au]− 2D, (2.1.3)

Let us consider the special class of solutions that travel with a critical speed c = −γ.

If c = −γ and A = 0, then the equation (2.1.2) becomes(
du

dζ

)2

=
p

3s
u3 − 2D =

p

3s

(
u3

3
+
B3

3

)
,where D =

B3p

6s
, B 6= 0 (2.1.4)

Now let us take the transformation ψ2 = B + u, where = ψ(ζ). Then (2.1.4) becomes

4ψ2ψ2
ζ =

p

3s

(
(ψ2 −B)3

3
+
B3

3

)
or, ψ2

ζ =
p

12s

(
ψ4 − 3ψ2B + 3B2

)
(2.1.5)

Again we assume that ψ = 3
1
4

√
Bz(ζ). Then (2.1.5) becomes

zζ = ±
√
pB

3
1
4 2
√
s

√
z4 −

√
3z2 + 1 (2.1.6)

The ordinary differential equation (2.1.6) is solved by using Jacobi elliptic functions (see[12]).

Using Jacobi elliptic function, (2.1.6) gives

2z
1+z2 = ±Sn

( √
pB

3
1
4
√
s
ζ, k

)
, where k =

√
3+1
2
√
2

= modulus of Jacobi elliptic function.

or, 2ψ

3
1
4
√
B
(
1+ ψ2

√
3B

) = ±Sn
( √

pB

3
1
4
√
s
ζ, k

)
or, 2aψ

a2+ψ2 = ±Sn
(
a
√
p√
3s
ζ, k
)

, where a = 3
1
4

√
B

By solving the above quadratic equation we have,

= ±a
1± Cn

(
a
√
p√
3s
ζ, k
)

Sn
(
a
√
p√
3s
ζ, k
) (2.1.7)

Hence, the solution to the equation (1.7) without viscosity is

u(x, t) = ψ2 −B = a2
[
1±Cn

(
a

√
p√
3s
ζ,k
)]2

Sn2
(
a

√
p√
3s
ζ,k
) −B

= B
√

3

1∓ Cn
( √

pB

3
1
4
√
s
(x+ γt), k

)
1± Cn

( √
pB

3
1
4
√
s
(x+ γt), k

) − 1√
3

 (2.1.8)
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Fig.1. Traveling waves r = 0 with B = 0.25, p = 0.25, s = 1, left γ = 0.2, middle γ = 4.5 and right γ = 9.5,

Eq. (2.1.8).

2.2 Viscosity present, r > 0

The equation (2.5a) is in the form of non-autonomous ordinary differential equation F (y, yv, v) = 0. Since v(z)

has only poles of order two, then the solution of the equation (2.5c) must be obtained in terms of Weierstrass

℘ functions (see[14], p-431) via the transformation

v = Ezpw(z) + F (2.2.1)

By substituting (2.2.1) in the equation (2.5c) with E, F constants, then for p = 2
5 , ω(z) will satisfy the elliptic

equation

ω2 = 4ω3 − g2ω − g3 (2.2.2)

where g2, g3 are invariants. Since dv
dz = − 1

yz and v(ζ) = − rsu(ζ), we have

dz

z
=
r

s
dζ (2.2.3)

The Weierstrass ℘ solutions can be written into the combined general substitution

u(ζ) = α− g(ζ) = α− e−mζΦ(ζ) (2.2.4)

where α and m are constants related to A and p. Substituting (2.2.4) into the equation (2.1),

g′′ − r

s
g′ − q

3s
g3 +

( p
2s

+
qα

s

)
g2 +

(
γ + c

s
− pα

s
− qα2

s

)
g = 0 (2.2.5)

here we consider

A = −(γ + c)α+
p

2
α2 +

q

3
α3 (2.2.6)

From (2.2.4) we have g(ζ) = e−mζΦ(ζ), therefore g′(ζ) = e−mζ(Φ′−mΦ) and g′′(ζ) = e−mζ(Φ′′−2mΦ′+m2Φ).

Hence (2.2.5) becomes

Φ′′ −
(

2m+
r

s

)
Φ′ +

(
m2 +

rm

s
+
γ + c

s
− pα

s
− qα2

s

)
Φ =

q

3s
e−2mζΦ3 −

( p
2s

+
qα

s

)
e−mζΦ2 (2.2.7)

We now consider Φ(ζ) = w(z(ζ)). By using the chain rule with ′ = d
dζ and ∗ = d

dz we have

Φ′(ζ) = w∗z′ and

Φ′′(ζ) = w∗∗z′2 + w∗z′′
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Therefore the equation (2.2.7) becomes

z′2w∗∗ +
[
z′′ −

(
2m+

r

s

)
z′
]
w∗ +

(
m2 +

rm

s
+
γ + c

s
− pα

s
− qα2

s

)
w =

q

3s
e−2mζw3 −

( p
2s

+
qα

s

)
e−mζw2

(2.2.8)

By setting

z′′ −
(

2m+
r

s

)
z′ = 0 (2.2.9)

we get

z′ = c1e
(2m+ r

s )ζ (2.2.10)

where c1 is an arbitrary constant. Again if we choose

m2 +
rm

s
+
γ + c

s
− pα

s
− qα2

s
= 0 (2.2.11)

then the equation (2.2.8) reduces to the following simplify equation

z′2w∗∗ − q

3s
e−2mζw3 +

( p
2s

+
qα

s

)
e−mζw2 = 0 (2.2.12)

The equation (2.2.12) can be make a more simple by choosing q = 0 and it reduces to

z′2w∗∗ +
p

2s
e−mζw2 = 0 (2.2.13)

Our aim is now to solve the differential equation (2.2.13) with the help of (2.2.10) by setting m = − 2
5
r
s . There-

fore the equation (2.2.13) becomes

c21e
2
5
r
s ζw∗∗ = − p

2se
2
5
r
s ζw2

or, w∗∗ = − p
2sc21

w2 = 6w2 where c21 = − p
12s

Integrating above equation we obtain

w∗2 = 4w3 − g3 (2.2.14)

where g3 is an integrating constant. Solution to the differential equation (2.2.14) is given by in terms of

Weierstrass ℘ function as

w(z) = ℘(z + c3, 0, g3) (2.2.15)

with invariants g2 = 0 and g3. Here c3 is an arbitrary constant.

Now the solution to the differential equation (2.2.10) is

z(ζ) = c2 +
5c1s

r
e
r
5s ζ (2.2.16)

where c2 is an integrating constant. Hence we have with c4 = c2 + c3

Φ(ζ) = w(z(ζ)) = ℘(c4 +
5c1s

r
e
r
5s ζ , 0, g3) (2.2.17)

Since here q = 0 and m = − 2
5
r
s the equation (2.2.11) becomes α = 1

p

[
γ + c− 6

25
r2

s

]
and (2.2.6) reduces to

A = −(γ + c)α+ p
2α

2.

Hence we have

α =
γ + c±

√
(γ + c)2 + 2pA

p
(2.2.18)

Therefore the general solution to the differential equation (2.2.2) is

u(ζ) = α− g(ζ) =
γ + c±

√
(γ + c)2 + 2pA

p
− e 2r

5s ζ℘(c4 +
5c1s

r
e
r
5s ζ , 0, g3) (2.2.19)
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By setting a particular value for the velocity c and the other parameters, we obtain α and A and substitution

of these values in the equation (2.2.19) gives the solution of the differential equation (1.7).

Fig.2. Solution for r = 1 with A = 1, p = 0.25, s = 1 γ = 0.5, c1 = 0.5, c4 = 1, g3 = 1, left c = 0.25,

middle c = 1.0 and right c = 2.4, Eq. (2.2.19).

Fig.3. Solution for r = 1 with A = 1, p = 0.25, s = 1 γ = 0.5, c1 = 0.5, c4 = 1, g3 = 1, left c = 3.5 and

right c = 4.5, Eq. (2.2.19).

3 Conclusions

In this paper we considered Compound Kortewegde Vries Burgers equation(CKdVB)and introduced the dissi-

pation term and finally we got the dissipative Compound Kortewegde Vries Burgers equation (DCKdVB). With 
the help of the canonical form of Abel equation it is proved that the DCKdVB equation is integrable in terms of 
Weierstrass’ elliptic functions. We solved this equation in two ways (i) when the viscous term is not present(i.e, 
r = 0) and it has traveling wave solutions which depend critically on the traveling wave velocity. (ii) When the 
viscous term is present(i.e, r > 0) and we solved it with the help of Weierstrass’ elliptic functions.
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